利用低气压电容耦合放电等离子体对聚甲基丙烯酸甲酯(PMMA)表面进行亲水改性,对比分析了Ar、N2、Air和O2四种等离子体放电气体和不同放电功率对其表面的影响。结果表明,经等离子体处理后的PMMA表面亲水性和抗蛋白性能均有不同程度的改善,其中Ar等离子体主要起刻蚀的作用,N2、Air和O2等离子体在对PMMA刻蚀的同时,接枝的官能团对其表面性能的改变起到主导作用。
甲基丙烯酸甲酯(PMMA)凭借易加工、高强度和低组织排异反应等优点,被用作基体材料,广泛应用于生物医用复合材料领域。作为一种医用材料,生物医用复合材料综合了基体与增强材料各自的优点,使得复合材料兼具各组分的优势。利用PMMA的优势性能,能够很好解决传统医用金属材料与组织结合不牢固,生物活性差,以及生物陶瓷材料脆性大、不抗弯等问题。然而在医用复合材料粘接过程中,由于PMMA的表面润湿性差,医用粘接剂无法完全润湿,粘接不牢固,使用一段时间后基体与增强组分脱落,导致可靠性差。另一方面,在组织环境中,由于PMMA表面非特异性蛋白吸附,往往引起细菌感染和局部炎症。国内外大量研究表明,引入极性官能团或者增加粗糙程度可以提高亲水性,可使医用粘合剂更好润湿表面,从而增强医用复合材料的可靠性。引入表面的亲水官能团还能够与游离水之间形成紧密结合的水合层,排斥蛋白质的接近与吸附,提高组织相容性。
表面亲水性的变化
实验中分别采用Ar、N2、Air和O2作为等离子体工作气体,对PMMA表面进行改性处理。不同工作气体放电等离子体对PMMA表面亲水性的改善存在一定的差异,如图1所示,其中经Ar等离子体处理后,改性样品的表面亲水性最弱。在等离子体中,电子与Ar发生非弹性碰撞产生激发态的Ar原子,对PMMA表面发生轰击并起到刻蚀作用。一般认为,等离子体刻蚀形貌有利于液滴在表面铺展。对比N2、Air和O2等离子体对PMMA亲水化改性效果,N2等离子体的亲化效果不及含有O2分子的Air和O2等离子体。这三种均属于反应性气体等离子体,在与PMMA表面作用过程中,不仅有物理刻蚀的效果,还会引发样品表面的接枝反应,导致其表面化学组成的变化,促进其亲水性的进一步改善。相比较物理刻蚀...