官能团的极性增加。
CH4 + E * & MDASH;> CH3 + H + E (3-1) CH3 + E * & MDASH;> CH2 + H + E (3-2) CH2 + E * & MDASH;> CH + H + E (3-3) CH + E * & MDASH;> C + H + E (3-4) CH4 + E * & MDASH;> CH2 + 2H (H2) + E (3-5) CH4 + E * & MDASH;> CH + 3H (H2 + H) + E (3-6) CH4 + E * & MDASH; C + 4H (2H2) + E (3-7) 自由基和下一个产品 A 之间的耦合发生反应。
测得的缺陷形成率是施加到栅极氧化物的电压的幂函数。因此,氩气等离子体清洗设备故障时间与电压的关系为TF = B0V-n (7-12)。如果氧化层足够薄,缺陷形成率与氧化层厚度无关,但临界缺陷密度会导致氧化层断裂。它强烈依赖于氧化层。层厚度。对于low-k材料TDDB,也有对应的root E模型。将不同模型的拟合曲线与同一组加速 TDDB 测试数据进行比较。
当水滴放置在光滑的固体表面上时,氩气等离子体除胶机水滴在基材上扩散,完全湿润时,接触角接近于零。相反,如果润湿是局部的,则接触角可以平衡在 0 到 180 度之间。固体基质的表面能对液体表面张力的影响越大,其润湿性越高,接触角越小。为了使液体与材料表面形成良好的结合,材料的液体张力应大于约2-10 mN/m。此类高分子材料具有化学惰性、低摩擦系数、高耐磨性、抗穿刺性和抗撕裂性。
氩气等离子体除胶机
喷漆后,将塑料件的油漆层切割成网格。接下来,将量规胶带粘贴到切割好的网格上,牢固地粘贴胶带,然后再次将其撕下。如果胶带上有油漆,则油漆粘得不好。切割网格以显示塑料零件上油漆层的粘合强度。使用测试墨水来估计如何测量表面能。将测试墨水涂在表面后,如果将其存储在一个地方,则固体的表面能较低。谈到油墨的表面能,如果保持湿润,固体的表面能将大于液体的表面能。可以使用一系列具有梯度表面特性的测试油墨来确定固体的总表面张力。
氩气等离子体清洗设备
等离子体去胶机,等离子体去胶机原理